ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進BP神經網絡的復合葉輪離心泵性能預測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


of Centrifugal Pumps with Compound Impeller Based on Improved BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    應用Matlab建立了復合葉輪離心泵效率和揚程的BP神經網絡預測模型,。選取73組試驗結果作為樣本,采用Levenberg-Marquardt法則對構建的網絡進行訓練,,并隨機選取12組訓練樣本外的數(shù)據(jù)對訓練好的網絡進行測試,。試驗的主要參數(shù)為流量Q, 葉片數(shù)z,,葉片出口安放角β2,,短葉片進口直徑Di,葉片出口寬度b2,,效率η以及揚程H,。其中選取Q,z,,β2,,Di,b2作為網絡的輸入層,,η和H作為輸出層,。預測結果的分析表明,預測值與試驗值具有較好的一致性,,利用BP神經網絡對復合葉輪離心泵性能進行預測是可行的,,可用來作復合葉輪的輔助設計,從而縮短試驗時間,,降低成本,。

    Abstract:

    Based on Matlab, BP neural network model for efficiency and head of centrifugal pumps with compound impeller predicting was established. Seventy-three groups of experimental data were selected as samples for BP neural network training with Levenberg-Marquardt law. Then twelve experimental data extra was random selecting to test the trained BP neural network. The main parameters for experimentation are flow rate Q, the number of blade z, outlet angle of blade β2, inlet diameter of splitter blade Di, outlet width of impeller b2, efficiency η and head H. Select Q, z, β2, Di , b2 as input layer, η and H as output layer. The results show the predicted value favourably accorded with experiment. So it is possible to use BP neural network for predicting performance of centrifugal pumps with compound impeller. BP neural network can be applied to compound impeller designing, which can shorten experimental time and reduce cost.

    參考文獻
    相似文獻
    引證文獻
引用本文

袁壽其,沈艷寧,張金鳳,袁建平.基于改進BP神經網絡的復合葉輪離心泵性能預測[J].農業(yè)機械學報,2009,40(9):77-80. of Centrifugal Pumps with Compound Impeller Based on Improved BP Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(9):77-80.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼