ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于向量內(nèi)積的機器人實時逆解算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


-time Inverse Kinematics Algorithm Based on Vector Dot Product
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高6R機器人逆運動學求解算法的實時性,提出了一種基于向量內(nèi)積變換的實時高效逆運動學求解算法,。將復雜的矩陣方程轉(zhuǎn)換為含有6個未知關(guān)節(jié)變量的10個純代數(shù)逆運動學方程,,并在方程的簡化過程中引入符號運算預(yù)處理,,避免了大量浮點運算帶來累積誤差,。通過相關(guān)方程的優(yōu)化線性組合,,有效避免了5,、6兩關(guān)節(jié)變量求解時產(chǎn)生增根的情況,,大幅提高了逆解算法的效率,。試驗結(jié)果表明,,同等求解精度要求下該逆解算法相比于其他算法具有更強的實時性,得到精確的8組封閉解平均僅需0.014ms,,能滿足機器人的在線控制要求,。

    Abstract:

    In order to improve the real-time performance of inverse kinematics for 6R robots, a real-time and efficient algorithm based on vector dot product was proposed. The complex matrix equations were transformed to 10 pure algebraic equations containing 6 unknown joint variables, and symbolic preprocessing was applied in simplifying equations without any error accumulations caused by floating-point calculations. The production of extraneous roots in the solving process of the 5th and 6th joint variables was avoided by optimizing the linear combinations of related equations, which greatly improved the efficiency of the algorithm. Experiments on a 6R robot show that, the proposed algorithm has a stronger real-time performance than those of others to get the same precision solutions, the average time for gaining 8 accurate closed-form solutions is only 0.014ms, and it can be applied efficiently in the practical on-line robot control. 

    參考文獻
    相似文獻
    引證文獻
引用本文

劉華山,朱世強,吳劍波,劉松國.基于向量內(nèi)積的機器人實時逆解算法[J].農(nóng)業(yè)機械學報,2009,40(6):212-216.-time Inverse Kinematics Algorithm Based on Vector Dot Product[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(6):212-216.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼