ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

靜電噴頭霧化特性預(yù)測(cè)模
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


Model for Atomization Performance of Electrostatic Spraying Nozzle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    將一種基于改進(jìn)粒子群優(yōu)化最小二乘支持向量機(jī)的預(yù)測(cè)模型引入靜電噴霧霧化性能預(yù)測(cè)領(lǐng)域,并給出了相應(yīng)的步驟和算法,。該模型能方便地預(yù)測(cè)噴霧參數(shù)對(duì)噴頭霧化性能的影響,,有助于正確認(rèn)識(shí)噴頭霧化性能隨噴霧參數(shù)的變化規(guī)律,。通過(guò)具體實(shí)例及與其他幾種預(yù)測(cè)方法的對(duì)比表明,,在相同樣本條件下,其模型構(gòu)造速度比標(biāo)準(zhǔn)LS-SVM方法高近1個(gè)數(shù)量級(jí),,模型預(yù)測(cè)誤差約為標(biāo)準(zhǔn)LS-SVM方法的50%,,預(yù)測(cè)精度比常規(guī)BP模型高1個(gè)數(shù)量級(jí)

    Abstract:

    。On the basis of analyzing disadvantages of conventional prediction model, a novel prediction model based on modified PSO least square support vector machine was proposed. Based on the new model, the design steps and learning algorithm were given. The practical experimental results show that the construction speed of this modified PSO LS-SVM model is 10 times less than that of the LS-SVM model, while the prediction error is 50%. Moreover, compared with BP model, the prediction accuracy is about 10 times higher than that of the former. The effects of electrostatic spraying parameters on atomization performance of electrostatic spraying nozzle can be predicted with the limited test data. Thus the variation law of atomization performance of electrostatic spraying nozzle following electrostatic spraying parameters can be obtained.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉春景,王科元.靜電噴頭霧化特性預(yù)測(cè)模[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(4):63-68. Model for Atomization Performance of Electrostatic Spraying Nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(4):63-68.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼