ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于小波變換和BP神經(jīng)網(wǎng)絡(luò)的蛋殼破損檢
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Detection in Eggs with Multi-level Wavelet Transform and BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種基于多層小波變換和紋理分析的蛋殼破損檢測方法。該方法對獲取的雞蛋透射圖像G分量在不同水平上進行小波分解,,計算和分析各水平高頻細(xì)節(jié)子圖像的紋理特征參數(shù),,實驗確定最有效的8個特征參數(shù)作為BP網(wǎng)絡(luò)輸入,,建立結(jié)構(gòu)為8—20—2的BP神經(jīng)網(wǎng)絡(luò)蛋殼破損分類模型,。實驗表明,,該方法對無破損蛋,、線狀破損蛋,、網(wǎng)狀破損蛋和點狀破損蛋的判別正確率分別為95%,、90%,、95%、80%,,平均識別率為

    Abstract:

    90%,。 A new method of crack detection in eggs was proposed with multi-level wavelet transform and texture analysis technology. First, G gray level image of all egg images were decomposed into approximation and detail sub-images at various levels by wavelet transform. Then, the feature vector which was composed of wavelet texture energy features, and the gray-level co-occurrence matrix features of the detail sub-images were analyzed and computed. Finally, with the most appropriate and effective eight parameters as inputs, the best BP neural network (8 input nodes, 20 hidden nodes, 2 output nodes)was employed to detect egg crack and classify eggs. The results of experiment proved that the correct discerning rate to detect eggs without crack and eggs with linear crack, meshy crack, point crack is respectively 95%, 90%, 95% and 80%, and the average correct rate to detect crack in eggs is 90%.

    參考文獻
    相似文獻
    引證文獻
引用本文

彭輝,文友先,王巧華,王樹才,吳蘭蘭.基于小波變換和BP神經(jīng)網(wǎng)絡(luò)的蛋殼破損檢[J].農(nóng)業(yè)機械學(xué)報,2009,40(2):170-174. Detection in Eggs with Multi-level Wavelet Transform and BP Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(2):170-174.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼