ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于復Morlet小波的汽車主減速器故障特征提取
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了基于復Morlet小波的汽車主減速器故障特征提取方法,。針對汽車主減速器故障振動信號的特點,結(jié)合復小波變換提供的幅值和相位信息構(gòu)造了兩組適合于機械故障特征提取的組合信息,。仿真信號的分析結(jié)果表明,,采用復小波變換的相位信息及所構(gòu)造的組合信息對信號突變點具有更好的敏感特性,,從而可以更好地對信號突變點進行提取和定位,。分別采用實小波變換和復小波變換及其組合信息對汽車主減速器故障信號進行分析。分析結(jié)果表明,,利用所構(gòu)造的組合信息能夠?qū)χ鳒p速器故障特征點精確定位,;而且只需一尺度小波分解即可得到較好的效果,從而大大減小了故障特征提取的計算量,。

    Abstract:

    Introducing the complex wavelet transform into the fault feature extraction of automobile main reducer, a fault feature extraction method for automobile main reducer based on complex Morlet wavelet transform was proposed. Aimed at the characteristics of main reducer vibrating signal, two groups of compounding information for the extraction of mechanical fault feature were constructed according to the magnitudes and phases of complex wavelet transform. The simulation results show that the phases of complex wavelet transform and compounding information are more sensitive to singular points of signal than magnitudes, which can extract singularity of signal efficiently and position the singular points of signal accurately. Subsequently, the fault signal of automobile main reducer was analyzed by complex wavelet transform with its compounding information and real wavelet transform respectively. The results show that main reducer fault feature points can be positioned accurately by compounding information, and the decomposition just needs scale 1 calculation, which reduces the calculation greatly for fault feature extraction.

    參考文獻
    相似文獻
    引證文獻
引用本文

張志剛,周曉軍,宮燃.基于復Morlet小波的汽車主減速器故障特征提取[J].農(nóng)業(yè)機械學報,2008,39(11):192-196.[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(11):192-196.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼