ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

儲(chǔ)糧害蟲圖像識(shí)別的研究進(jìn)展及展望
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    圖像處理技術(shù)檢測儲(chǔ)糧害蟲,具有快速,、準(zhǔn)確,、可視化等優(yōu)點(diǎn)。為了充分利用國內(nèi)外的研究成果,,促進(jìn)我國在該領(lǐng)域的研究與應(yīng)用,,從內(nèi)部害蟲和外部害蟲兩個(gè)方面,綜述了基于可見光,、近紅外和軟X射線3種方法的計(jì)算機(jī)圖像處理技術(shù)在儲(chǔ)糧害蟲自動(dòng)識(shí)別中的研究進(jìn)展,,分析了各種方法的優(yōu)缺點(diǎn)。提出今后應(yīng)從新的特征提取,、活蟲與死蟲的識(shí)別,、早期害蟲侵害的檢測、動(dòng)態(tài)圖像的研究,、自動(dòng)傳輸機(jī)構(gòu)的研制等方面開展深入研究,,以實(shí)現(xiàn)糧蟲的自動(dòng)檢測。

    Abstract:

    The detection system for stored-grain pests based on image processing technology has many advantages of rapidness, accuracy, visualization and etc. In order to take full advantages of the foreign and native research findings, improve its research and application in this field in China, the research progress of automatic recognition for stored-grain pests outside and inside grain kernels was summarized by utilizing computer image processing technology based on three methods, such as visible image, near infrared image and soft X-ray. The superiority and inferiority of each method was analyzed. Further key research work from five aspects was presented, such as new feature extraction, recognition of live and dead pests, detection of early pest infestation, dynamic image technique, development of automatic separating and transmitting machine, so the automatic detection of stored-grain pests could be actualized. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

毛罕平,張紅濤.儲(chǔ)糧害蟲圖像識(shí)別的研究進(jìn)展及展望[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(4):175-179.[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(4):175-179.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼