ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于卷積型小波包變換的信號降噪研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種基于卷積型小波包變換的多尺度降噪方法,。采用卷積型小波包變換,,克服了傳統(tǒng)小波包變換數(shù)據(jù)點數(shù)隨分解尺度的增加而呈指數(shù)減小的問題,;改進了噪聲方差估計方法,較好地保留了信號的主要細節(jié),;采用了新的閾值函數(shù),,其表達式簡單易于計算,同Donoho軟閾值函數(shù)具有相同的連續(xù)性,,且克服了軟閾值函數(shù)中估計小波系數(shù)與分解小波系數(shù)之間存在著恒定偏差的問題,。仿真結(jié)果表明,新的降噪方法有效抑制了在信號奇異點附近產(chǎn)生的Pseudo-Gibbs現(xiàn)象,,在降噪精度上優(yōu)于傳統(tǒng)的小波包降噪方法,。

    Abstract:

    A multi-scale de-noising algorithm based on the convolution type of wavelet packet transformation was presented. This algorithm overcame shortcomings of the classical wavelet packet transformation, in which the length of sequences obtained always decreased by decomposition scales. The new algorithm improved estimated method of white noise standard deviation at each scale and thus kept the main edges of signal well. A new threshold function has been employed in this algorithm, which was simple in expression and as continuous as the Donoho's soft threshold function, and overcame the shortcoming of an invariable dispersion between the estimated wavelet coefficients and the decomposed wavelet coefficients of the soft-threshold method. Simulation results indicated that the new de-noising method suppressed the Pseudo-Gibbs phenomena near the singularities of the signal effectively and achieved better SNR gains than de-noising method based on classical wavelet packet transformation. 

    參考文獻
    相似文獻
    引證文獻
引用本文

朱啟兵,李志華,陳立平.基于卷積型小波包變換的信號降噪研究[J].農(nóng)業(yè)機械學報,2007,38(12):160-164.[J]. Transactions of the Chinese Society for Agricultural Machinery,2007,38(12):160-164.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼