ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多目標(biāo)優(yōu)化的鋼管拉拔成形過程設(shè)計(jì)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)鋼管在拉拔成形中出現(xiàn)的拉拔力過大,、成形后鋼管的殘余應(yīng)力大的問題,提出了基于“FEM-ANN-MOGA”方法的拉拔過程優(yōu)化方案,。結(jié)合正交設(shè)計(jì)、有限元模擬技術(shù)和BP神經(jīng)網(wǎng)絡(luò),建立了拉拔應(yīng)力,、殘余應(yīng)力與成形參數(shù)之間多目標(biāo)優(yōu)化的非線性映射模型,。采用基于向量評(píng)價(jià)的多目標(biāo)遺傳算法和小生境技術(shù),,求得了均勻分布的Pareto最優(yōu)解,。通過定義滿意度函數(shù),,選出了符合要求的滿意解,并對(duì)其進(jìn)行了仿真,。仿真結(jié)果與優(yōu)化結(jié)果基本吻合,,驗(yàn)證了該優(yōu)化方法的正確性與可行性,。

    Abstract:

    Considering the problems of oversize drawing force in pipe forming and the excessive stresses in pipe surface, a concept of multi-objective optimization was presented based on “FEM-ANN-MOGA” method. Orthogonal design, finite-element simulation and BP neural network were combined together to build the nonlinear mapping relations between drawing stress, residual stress and forming parameters. In the process of optimization, the multi-objective genetic algorithm based on vector evaluation technique and niche technique was adopted to obtain the evenly distributed Pareto-optimal solutions. By defining a satisfactory degree function, the satisfactory solution was selected, and the FEM simulation verification was carried out. The simulation results accorded with the optimized ones perfectly, which showed that the method is feasible and credible.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

胡龍飛,劉全坤,王成勇,胡成亮,馮秋紅.基于多目標(biāo)優(yōu)化的鋼管拉拔成形過程設(shè)計(jì)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(10):161-164.[J]. Transactions of the Chinese Society for Agricultural Machinery,2007,38(10):161-164.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼